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Abstract— This paper presents a method which allows robots
to infer a human’s hierarchical intent from partially observed
RGBD videos by imagining how the human will behave in the
future. This capability is critical for creating robots which can
interact socially or collaboratively with humans. We represent
intent as a novel hierarchical, compositional, and probabilistic
And-Or graph structure which describes a relationship be-
tween actions and plans. We infer human intent by reverse-
engineering a human’s decision-making and action planning
processes under a Bayesian probabilistic programming frame-
work. We present experiments from a 3D environment which
demonstrate that the inferred human intent (1) matches well
with human judgment, and (2) provides useful contextual cues
for object tracking and action recognition.

I. INTRODUCTION

Reasoning about humans is central to a number of
applications in robotics, from human-robot interaction to
self-driving vehicles. Humans utilize many contextual cues
gained from observing others, such as object affordances
and detections. These cues form a foundation of human
perception. Inferring the intent of a human will be essential
for integrating robots into our everyday lives. A robot that
interacts with humans must be able to infer a human’s goals
based on passive observation.

We consider a scene with two agents: an actor, who wishes
to accomplish some goal, and a passive observer (e.g. robot)
who is trying to infer the goal of the actor for a collaborative
task. In our setting, the actor has a well-defined hierarchical
intention, such as making coffee: the goal of the observer
is to infer the actor’s hidden plan. The observer has the
visual perception capabilities of a modern robot, namely
object and skeleton tracking. We assume that the actor is
capable of performing their chosen plan optimally (called
the rationality assumption) [11] and that the actor has perfect
knowledge of the state of the scene. The key issues are (1)
how to infer an actor’s intent, and (2) how to model the
state of the scene. The robot observer does not have perfect
scene knowledge due to the inherent ambiguity in modern
computer vision object and skeleton tracking algorithms,
as well as occlusions. In this scenario, the observer must
effortlessly integrate partial information as it is revealed over
time into a cohesive representation of not just the scene, but
also the human’s mind.
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To address the above challenges, in this paper we focus on
one important aspect of modeling a human mind: inferring
intent from limited knowledge and partial observations. We
can use the inferred plan of the actor to refine the scene
understanding of the observer (i.e. by observing the actor
making coffee, the machine can infer the presence of an
occluded cup). We treat the observed human’s intent as a
deterministic but unobservable program; we seek to uncover
the inputs to this latent process.

We consider the joint distribution over all possible plans,
actions, and world states parameterized by a And-Or graph
(AoG), a stochastic context-sensitive grammar. This repre-
sentation is used because it is (1) hierarchical, making it
capable of representing realistic human plans; (2) compo-
sitional, allowing for a compact representation of the many
possible configurations of plans and actions; (3) probabilistic,
which naturally encodes the uncertainty resulting from partial
or noisy observations. To perform plan inference on this
structure, we use an algorithm similar to particle filtering
(PF). Like PF, we track the most likely explanation over
time as a number of parse graphs drawn from an And-Or
graph. Unlike in typical PF, which tracks a low-dimensional
distribution, parse graphs are encoded as a complex And-Or
graph structure over time.

A. Overview of our method

The overall goal of our method is: given an observed
3D skeleton trajectory in a continuous 2D plane, construct
an And-Or graph that explains the observed sequence of
actions. An example of such a system is visualized in Fig.
1. This synthesizing process can be thought of as inverting
the hierarchical planning process in a human’s mind, similar
to what is suggested in [2]. We assume that humans plan
optimally to the best of their current knowledge, a concept
known as the principle of rationality [2]. As demonstrated
through various psychological studies [11], humans routinely
apply the rationaly assumption to one-another when making
goal inferences. Using this assumption, we generate optimal
trajectories using a low-level continuous motion planner.
With each subsequent observation, we tune the production
probabilities of the And-Or graph to better predict future
motions and actions.

The remainder of this paper will be organized as follows.
First, we will review the relevant literature and highlight our
contributions. Then we will formalize the above intuition
about plan inference: (1) define the posterior distribution
over plans; (2) introduce how to compute probabilities over
the And-Or graph and specific parse graphs; (3) simulate
trajectories for a given parse graph; (4) compare simulated
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Fig. 1. The plan inference task, seen from the perspective of a observing robot. The top left panel shows 4 different goals (target objects) in a 3D scene.
The bottom left panel shows one outcome of the proposed method: the marginal probability of each terminal action over time. We note that terminal actions
are marginal probabilities over the probability density described by the hierarchical And-Or graph. The remaining four images on the first row show four
rational hierarchical plans for different goals: Goal 1 is within reach, which does not require standing up; Goal 2 requires standing up and reaching out;
Goal 3 and Goal 4: require standing up, moving, and reaching for different objects. The second row shows a progression of time corresponding to the
bottom left panel. The action sequence and its corresponding probability distributions for each of these four goals are visualized in the bar plots in the
upper left of each frame. We can see that when the agent stands up, the posterior probability of the first goal drops suddenly.

and observed trajectories; (5) update the distribution of plans
to maximize the probability of generating trajectories that
match the observations. In the experiments section, we will
demonstrate (1) our method performs well on the task of
inferring a plan compared against three baselines; (2) our
method improves object tracking and detection results in
challenging occluded settings.

B. Related work
Psychological motivation. Our work is motivated by a

series of cognitive science studies by Baker et al. [4], [2], [3]
about the Bayesian Theory of Mind (ToM), which suggests
an intentional agent’s behavior is based on the principle of
rationality: the expectation that agents will behave rationally
to efficiently achieve their goals given their beliefs about the
world, as demonstrated in [11]. This assumption is similar to
those made in other plan recognition works like [12], [10]. To
simplify our task, we also assume that humans are displaying
their intent explicitly. This assumption is a simplification of
a traditional cognitive science research task, which typically
focuses on difficult cases where the intention is hidden.
However, even with this assumption, plan inference remains
an interesting and challenging problem for A.I. research as
an initial step toward solving the more general plan inference
problem.

Inverse planning. Plan inference has previously been
posed as the problem of inferring a most-likely sequence
of transitions in a dynamic Bayesian network (DBN) for
trajectory disambiguation as in [8], [2], [6], [5], [21], [35],
[40], [26], [23], [17]. The proposed method is distinct in
its ability to infer hierarchical goals in the form of context-
sensitive grammars, giving it considerably more flexibility
than a DBN model. One major limitation of plan inference
based on DBN methods is its inability to cope with long-term
dependencies or plans with an arbitrarily deep hierarchy. The
Markov property implicit in these solutions makes tracking
long-term dependencies cumbersome. Some extensions of

Bayesian networks to handle long-term dependencies such
as [5] have been proposed; however, these methods are
still limited to expressing context-free plans with limited
depths, unlike the proposed method which has equivalent
expressibility to a context-sensitive grammar.

Plan inference has classically been explored as a problem
of lifted inference in first-order logic [19]. This framework
has recently been applied to the problem of inferring a
human’s intention in a robot-human teaming scenario in [32].
We seek to extend this plan representation to a context-
sensitive stochastic grammar, which affords probabilistic
inference strategies such as particle filtering. This extension
allows for a principled conditioning process based on Bayes
rule for incorporating observations.

Plan inference with context-sensitive grammars has been
explored in [12], [28], [27]; however, they only consider the
problem of inferring intent in a discrete planning domain.
This simplifies the search process by disregarding infor-
mation from partially observed trajectories; integrating this
partial information is one of our contributions.

One-step goal inference has been posed as a problem of
inverse optimal control or inverse reinforcement learning as
in [40], [24], [1], [7]. We are distinct in our use of a particle
sampler which simulates a hierarchical multi-step trajectory,
rather than computing a most likely Markov decision process
with a single goal.

Forward planning. We choose to use an And-Or graph
representation over the many alternative forward planning
algorithms such as hierarchical task networks [9], [25] due
to its ability to represent and model uncertainty [39]. The
inverse planning problem is inherently probabilistic and
requires representing distributions over all possible plans.
The And-Or graph has been considered for forward planning
in [22] and inverse planning in [27]. The proposed method
extends these result to allow for the inference of complete
plans from partial trajectories, as well as introducing a new

1490



sampling and conditioning process.
Probabilistic programming. Probabilistic programming

is a paradigm in which probability distributions are defined
by deterministic programs parameterized by random vari-
ables [13], [14]. We view plan inference in a similar way.
We use a deterministic program (a planner which provides
a valid sequence of sub-goals and continuous trajectories)
parameterized by random variables (the presence of terminal
nodes and production probabilities). To perform inference,
we sample from a deterministic planner according to the
distributions defined by the And-Or graph structure.

C. Contributions

In comparison with the above literature, we make the
following contributions:
• We model human intention using a generative hierar-

chical, compositional, and probabilistic And-Or graph.
• We propose a particle-filtering-based process for per-

forming hierarchical plan inference on an And-Or graph.
This process is capable of inferring long-term planning
dependencies and context-sensitive policies.

• We benchmark the efficacy of our approach through ex-
periments which jointly infer object recognition, action
detection, and intent. The additional context gained by
plan recognition improves object and action detection
rates in previously challenging occluded settings.

II. MODELING HIERARCHICAL INTENT

In this section, we will introduce our algorithm to infer
the hidden causes behind observed human movement and
object displacements with visual uncertainties. This mirrors
a typical environment in which a robot is observing a human
interacting with a 3D scene. An overview of the method is
presented in Algorithm 1.

We use a graph structure called a temporal And-Or Graph
(T-AoG), dubbed “temporal” due to the fact that AND nodes
constrain their children to be executed in sequence. This
graph is a representation of a stochastic context-sensitive
grammar S = 〈S,Vn,T,R,P〉, where S is the root node, Vn
is the set of non-terminal nodes, T is the set of terminal
nodes, R is the set of production rules, P is the set of
probabilities on production rules, similar to the formulations
in [39], [27]. We consider a parse graph pg to be a valid
sentence from this grammar, i.e. a plan. From here on we use
the term pg and plan interchangeably. We further decompose
the non-terminal nodes into two sets: the AND-nodes Vand
and the OR-nodes Vor. The Vand nodes encode a temporal
relationship between its children (i.e. in Fig. 2, action B
must occur before action C in pg1). The Vand nodes have a
production probability of 1 and thus and must always occur
for a valid plan. The Vor nodes form a production rule with
an associated probability ωi, i.e. you may choose one of
its children each weighted with a certain probability. The
terminal nodes T are non-decomposable observations (i.e.
walk, stand, sit, etc.). Terminal nodes also have an associated
production probability which corresponds to the likelihood
that a given action or object state is observed.

Thus the inverse planning problem can be formulated
in a Bayesian framework as computing the T-AoG that
maximizes the likelihood of generating the observed human
actions Xobs. We learn the parameters ω by drawing sample
pgs from the T-AoG and comparing them with Xobs. The
maximum a-posteriori (MAP) pg, denoted pg?, is therefore
the most likely plan. In addition to producing pg?, we also
produce a probability distribution over all possible other
plans in the form of a learned T-AoG, giving it distinctly
more expressive power than traditional plan recognition
strategies based on parsing a stochastic context-sensitive
grammar, e.g. those in [12] which are limited to producing
MAP estimates.

We formulate the plan recognition task in terms of ap-
proximate sampling and prediction from the posterior distri-
bution:

P(pg | Xobs) ∝ P(pg)P(Xobs | pg)

∝ ∑
Xpred

P(pg)P(Xpred | pg)P(Xobs | Xpred)

∝ ∑
Xpred

P(pg)δ f (pg,X)(Xpred)P(Xobs | Xpred),

(1)

where pg is sampled from the T-AoG, Xobs is the observed
trajectory (i.e. it includes the trajectory from the initial
time to the current time), and δ f (pg,X)(Xpred) is a delta
function representing whether current Xpred can be generated
from the pg, f (pg,X) is a deterministic program generating
trajectories, i.e. the hierarchical planner including a high-
level planner HTN or T-AoG, and low-level planner RRT∗.
We can interpret pg? as the MAP distribution of the plans
in the T-AoG:

pg? = argmax
pg

P(pg | Xobs). (2)

Then pg? is the most likely plan an agent is currently
executing. A key observation of this formulation is the
integration of the deterministic function δ ; this determinism
inside a stochastic process is analogous to a probabilistic
programming approach taken in [31], which treats cognitive
processes as latent deterministic sub-programs with proba-
bilistic inputs (see Sec. I-B). This gives us generality beyond
a typical DBN or grammar-based approach by allowing
us to formulate arbitrary programs as latent causes for
agent’s actions, over which we can do Bayesian inference.
The following subsections show how we (1) construct this
deterministic planning procedure and (2) perform inference
to compute P(pg | Xobs).

A. Modeling Intent

Here we formulate P(pg). An actor’s intent is modeled
by a temporal pg, as seen in Fig. 2, which describes a
hierarchical decomposition of events and actions that an actor
performs in order to accomplish a goal. The derivation of the
tree is specified as a probabilistic grammar similar to [12] or
the PHATT system described in [10]; however, we do inverse
planning in a continuous space, which requires integrating
partial information about trajectories. The terminal nodes
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Fig. 2. The particle filtering process. We see an agent in a 3D scene executing a small hierarchical plan. The top row shows the agent situated in a
3D scene with four terminal objectives. The bottom row shows both the hierarchical And-Or graph representation of the agent’s plan and the marginal
probability for a given terminal action to be executed in the future. Each non-terminal node is a black filled circle. Edges with arcs are AND nodes, edges
with annotated production probabilities are OR nodes. We see that over time the AoG production weights are updated in order to increase the likelihood
of the observed trajectory. The updated AoG at time t2 imagines trajectories according to the posterior probability density, incorporating the information
about the observed trajectory.

in our grammar represent atomic actions that can not be
decomposed further. The non-terminal nodes represent either
AND structures, whose children must be executed in order,
or OR structures, of which only one child must be executed.

We represent intent as a temporal And-Or graph (T-AoG),
as seen in Fig. 2, similar to those used in [39], [27]. The T-
AoG encodes a probability distribution over all plans, P(pg),
as shown in Fig. 2.

We are interested in computing the probability of a pg;
this would correspond to the likelihood of a given plan
(See Fig. 2). The probability of a given terminal node Ti
is computed in Sec. II-C. The probability of an OR-node O
to take branch i is ωi, again shown in Fig. 2. These ωi along
with Ti parameterize the entire distribution of plan proposals;
the goal of inference is to learn these ω to maximize the
posterior distribution given in Eq. 1.

We compute the probability of a given pg from the prior
distribution over pgs recursively, as given in Fig. 2, according
to:

q(n) =


ωi×q(child(n)) If n is an OR-node

∏i q(children(n)) If n is an AND-node
Ti If n is a terminal node.

(3)

Therefore by taking q(pg), i.e. computing the recursive
probability of the root of a given pg, we compute the
probability of a given pg. Note that OR-nodes in a pg always
have a single child with one production probability ωi while

AND-nodes have many.
Thus the proposal distribution for inferring intent involves

drawing pgs from the distribution defined by the T-AoG:

P
(
δ f (pg,X)(Xpred) = pg

)
∼ q(pg). (4)

This forms the foundation for the particle filtering inference
algorithm outlined in Sec. II-D and is motivated from a
probabilistic programming perspective (See Sec.I-B). We do
not consider here the problem of initializing the weights ωi
or the grammar encoded by this T-AoG; this could be learned
through observations of human interactions using the method
shown in [29].

B. Rapidly-Exploring Random Tree* (RRT*)

We show how to generate the terminal nodes T from the
T-AoG, e.g. lets us generate Xmake coffee. RRT* is a low-
level subroutine invoked by the T-AoG whose purpose is
to find the minimum-cost path from one location in space to
another. RRT* executes terminal sub-goals to simulate ratio-
nal behaviors f (pg,B)→ Xpred. The variable B represents a
background collision map, which is encoded in the actor’s
beliefs of the scene. See Fig. 3(a) for a visualization of this
process in two dimensions.

An RRT* planner (based on the algorithm in [18]) is
used for generating approximate rational plans in a complex
environment, which allows the planner to generate walkto
and reach, which are not discrete events but rather se-
quences of observable motions in a continuous space. See
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Fig. 3. Visualization of the RRT* algorithm sampling trajectories in a (a)
2D occluded plane corresponding to an occlusion map computed from the
office scene in Fig. 2 and (b) 3D voxel space. The goals are shown with
green dots; this setting is office scene from Sec. III. In (b) we see how our
modified DTW algorithm integrates the motion of humans (shown with red
dots) to accomplish a 2-step hierarchical goal. Each trajectory shown above
is a particle.

the synthesized trajectories in Fig. 2 for an example of how
RRT* can be used to sample from the distribution of plans
defined by a T-AoG.

A predicted mental status pg sampled from the AoG
according to P(pg) could be translated into a sequence of
actions Xpred by RRT*. It is very unlikely that a simulated
trajectory will exactly match the observed behavior Xobs. In-
stead of requiring exact matches, our formulation relaxes the
matching problem by a stochastic likelihood P(Xobs|Xpred),
extending its generality beyond a simple most-likely parse
such as those in [12].

C. Dynamic Time Warping (DTW)

Here we model P(Xobs | Xpred), which is a measure of
how well the observed trajectory matches the synthesized
trajectories. A Dynamic Time Warping (DTW) algorithm
[33] measures the similarity between two temporal sequences
which may vary in time or speed. The DTW algorithm
outputs the shortest mean distance as well as matching cor-
respondences between two matched sequences. The shortest
mean distance is fed to the stochastic likelihood function
in the form of a simple Gaussian function. The Gaussian
variance controls the tolerance of the model. The output
matching correspondences provide the detailed parsing for
each frame of the observed sequence.

We modified the original DTW algorithm in order to make
it more suitable for matching multi-dimensional sequences
and sub-sequences. By using sub-sequence matching, we
allow a complete predicted sequence match to be compared
to an incomplete observed sequence.

DTW provides a distance between two trajectories, which
is used as an energy in a Boltzmann distribution assessing
how likely a given sequence is to be the actor’s course
of action. For example, if the actor is currently walk-
ing away from the coffee pot and the next action ex-
pected is make coffee, then the distance between the
observed and predicted trajectories will be large, making
P(Xobs|Xmake coffee) correspondingly smaller.

D. Stochastic Inference

Here we model P(pg | Xobs). The online parsing algorithm
has two major steps: stochastic filtering and stochastic mem-
oization. The stochastic filtering algorithm works like a par-
ticle filtering algorithm [16] in spirit, which uses importance
sampling to filter out the proposal samples. The stochastic
memoization technique is used to reuse previous computation
and generate better proposals for the coming frames at the
same time.

We make the approximate Bayesian inference with proba-
bilistic programs, sampling pgs from the T-AoG and produc-
ing trajectories from δ . At each time iteration, the algorithm
performs two iterative steps:

Stochastic filtering predicts possible human actions by
sampling from our generative program δ as defined in Eq.
4, and re-weights the samples by comparing the samples
with newly observed motion trajectory. Traditional particle
filtering requires a strong assumption on the Markov property
along the time axis, which does not hold in our case as our
grammar model encodes long-term relationships. Here we
encode the posterior distribution in the form of production
probabilities for each statement in the stochastic grammar.
This representation allows us to encode long-term and com-
plex relations between observed and predicted trajectories
efficiently.

We perform re-weighting to improve the likelihood that
the T-AoG will generate plans that match the observations
using the loss computed by DTW. Let #(O j

i ) be the number
of synthesized particles that go down path i of OR-node
j, and #(O j) be the number of synthesized particles that
reached OR-node j, and let N be the total number of particles
synthesized. Then by the law of large numbers,

lim
N→∞

#(O j
i )

#(O j)
= ωi. (5)

This equation provides the following update procedure for
the weights for each OR-node.

Let Xk
pred be the kth synthesized trajectory from the T-AoG.

Compute the loss of each trajectory (denoted Xk) by calcu-
lating Pωt (Xobs | Xk

pred) from DTW. Here we make explicit
that P is parameterized over the production probabilities ω

at a current time t. This loss is decomposable along each
OR-node production; thus we can optimize over each OR-
node individually to maximize the posterior probability of
generating Xobs by choosing ω

t+1
i such that the AoG at time

t +1 prefers distributions that match Xobs:

ω
t+1
i ∝

#(O j
i )

#(O j)
×∏

k∈A
Pωt

i
(Xobs | Xk

pred), (6)

where A is the set of particles that contain OR-node j that
take branch i. Due to Eq. 5 this can be interpreted in the
limit as N→∞ as rescaling ω t

i by some factor corresponding
to how well its particles predict the observed trajectory.
The worse a particle performs (the lower Pωt

i
(Xobs | Xk

pred)),
the more penalized its production probability is by the
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update rule. Once we complete the sampling process, we re-
normalize all the ω

t+1
i so that the sum of all transitions for

each OR-node equals 1. In the event that no particles reach a
particular production rule, the production probabilities from
the previous time-step are propagated.

Stochastic memoization. In the next time frame, we sam-
ple anew from the learned ω

t+1
i from the previous time-frame

in order to prioritize exploring more likely future goals.
This process is known as stochastic memoization, outlined in
[14], which records a posterior grammar of possible previous
explanations according to the weighted samples from the
previous time-step. This allows the algorithm to make use
the previous posterior beliefs to generate better proposals
for coming frames. We summarize the particles from the
previous time step in the posterior grammar. The posterior
grammar shares an identical structure with the prior grammar
mentioned before, but has different branching probabilities
due to the updating procedure in Eq. 6. We weight the
updating of each OR branch based on (1) the number of
particles that pass through that branch and (2) the error of
the particle produced by that branch.

We summarize the stochastic inference algorithm in Al-
gorithm 1.

Data: 3D Scene, Video Frames (V ), Dictionary (∆)
Result: ω (Parameterized T-AoG)
CollisionMap = SCENERECONSTRUCTION(V );
RRT* = RRT*Planner(CollisionMap);
P = Planner(∆);
Particles = [];
for Frame vt in V do

ObservedTrajectory = ObjectTracking(v1, · · · ,vt );
PredictedPlan = Planner.sample(Particles);
PredictedTrajectories = RRT*.search(PredictedPlan);
Loss = DTW(ObservedTrajectory,

PredictedTrajectory);
Planner.reweight(Loss);
Particles = PredictedTrajectories;

end
return Planner.weights

Algorithm 1: The stochastic inference algorithm for finding
the most likely pg given a sequence of observed actions.
Here the weights of the planner represent the MAP estimate
of the T-AoG.

III. EXPERIMENTS

The general goal of our experiments is to show (a) the
effectiveness of our inference procedure and (b) how this
inference procedure can be used to improve robot perception.
We evaluate our algorithm on three tasks: intent prediction,
action recognition and object tracking. Each of these tasks
is essential for constructing a robot platform capable of
interacting with humans in a meaningful way.

A. Experimental Apparatus

Our experimental apparatus was comprised of an active
sensing robotics platform which tracks human movements

in an environment with an RGBD sensor as shown in Fig.
4. We transformed the point cloud (2.5D) into a voxel world
(3D) and used it to recognize object affordance according
to a recent approach by Zheng et al. [38]. Each voxel is
a volumetric pixel whose color represents 3D height. We
used a state-of-the-art RGBD tracking algorithm [15], [30]
to detect and track 3D objects in the video frames. We tested
our system in both a living room scene shown in Fig. 2 and
an office scene in Fig. 4. We recorded about 1 hour RGBD
video for the experiments. The dataset details are reported
in Table I.

TABLE I
SUMMARY OF OUR DATASET

# frames # clips # actions # objects # tracking BBs
13981 31 29 34 116261

B. Intent Prediction

The intent prediction is made very challenging by the
goal ambiguity problem: there are 30 candidate goals for
any given frame. We presented the count of goal objects as
they appear in the video. Some of the objects are very close
to each other as shown in Fig. 4, so it is almost impossible
to identify all the goals given noisy tracking trajectories. We
compare our algorithm to three baseline algorithms on the
intent prediction task. The result is presented in Table II; the
“% of observation” row shows what percent of the observed
trajectory was presented to each model. We evaluate the four
algorithms given different percentages of observations, i.e.
trajectories with different lengths from the goal.

The first baseline is the Euclidean distance from current
human position to the goal. This baseline is quite simplistic;
randomly guessing has a 3% chance of being correct, while
the baseline is even worse since it prefers nearby goals.

The second baseline is the Euclidean distance combined
with a grammar prior, which is a substantial improvement
on the first baseline. The prior uses knowledge of action
sequences to weight the intents, which leads to higher overall
accuracy. This baseline is quite similar to a recent work by
[27] on action prediction, which built a grammar in which
terminal nodes are defined by Euclidean distances.

The third baseline is an algorithm based on inverse planing
without hierarchy. Baker et. al.’s work [3], [2], [4] and Kitani
et. al.’s work [20] are similar to this baseline. However, their
approaches are based on variants of Markov decision process
(MDP) which only are demonstrated for low-dimensional
discrete space. We implemented our planner based on RRT*,
which is designed for fast optimization in high-dimensional
continuous spaces, such as the human body movements. We
use a limited planning dictionary with 29 terminal nodes.
We ultimately measure the percentage of frames in which
the most likely pg matches the ground truth pg.

C. Action Recognition

We evaluate our action recognition algorithm by observing
a sequence of action before and after the goal changing
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(a) (b) (c)

(d)

Fig. 4. (a) Observed RGBD video with ground truth labels of object bounding boxes and goals for each frame. The RGBD video is collected by a
robotics system which can automatic track the agent’s movement. At the beginning of each video clip, the robot stitches the scene together. We show in
(d) the manually labeled objects in the stitched panoramic scene, which is used as an initialization for object state tracking. In (b,c) we see how the labeled
objects are mapped to the 3D reconstructed environment for each frame, and how these skeletons are projected into a 3D and 2D space.

TABLE II
INTENT PREDICTION ACCURACY

% of observation 90% 70% 30% 10%
Euclidean Distance (E.D.) 5% 0% 0% 0%
E.D. w/ Grammar Prior 13.1% 10.5% 6% 3%

Inverse Planning w/o Hierarchy 15.8% 13.2% 10.5% 10.5%
Ours 28.9% 13.3% 18.4% 15.8%

TABLE III
ACTION RECOGNITION ACCURACY

SVM ICCV13 [36] Ours
walk 88% 98% 91%

stand up 68% 94% 92%
sit down 65% 92% 92%

grasp 43% 64% 59%
put 25% 44% 53%

fetch 33% 54% 83%
touch 35% 41% 54%
drink 70% 91% 91%
call 65% 89% 94%
eat 22% 54% 73%

states. For example, we observe 3 seconds before and after
the “grasp” action. We compare action recognition of ter-
minal actions (operators) with an SVM as a baseline and a
state-of-the-art algorithm [36] with similar interacting action
categories. Our algorithm outperforms the other algorithms
on the task of jointly inferring actions and object states as
shown in Table III.

D. Object Tracking

We manually labeled 116,261 bounding boxes (BBs) for
evaluating object tracking by Vatic [34]. Each bounding box
has an occlusion label. We are able to recover the states of
the scene from the state of the terminal nodes of the most

TABLE IV
OBJECT TRACKING ACCURACY

ICCV11[15] ICCV13[30] Ours
No Occlusion 34% 72% 74%

With Occlusion - - 35%
All Frames - - 65%

likely AoG by assuming the actor has an ideal observation
and understanding of the scene. We evaluate the tracking of
objects with a state-of-the-art RGB tracking algorithm [15]
and RGBD tracking algorithm [30]. The tracking problem
is very challenging due to heavy occlusions and camera
movement. To compensate for this, we evaluate tracking
accuracy by checking whether or not two bounding boxes
have 10% overlap with each other. The results in Table
IV demonstrate that our algorithm not only improves the
tracking result for non-occluded objects, but also success-
fully tracks objects when they are occluded or interacting
with actors. Our errors primarily result from misalignment
between 2D images, 3D scenes, and skeletons. The algorithm
can successfully identify the relations, such as there being a
mug in the actor’s hand, but occasionally fails to locate the
exact object position due to noisy hand tracking data.

IV. CONCLUSION

Inferring an agent’s hierarchical objective is an essential
tool for creating systems involving human-robot interaction.
A robot must be able to understand a human’s actions: we
propose to do this by inverting the planning process of a
human [2]. By imagining a human’s plans, a robot can truly
understand human intent and motivations.

Our implementation seeks to make plan inference com-
putationally tractable without limiting the expressiveness of
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human intent. We focus our search space based on what
we have observed, and model our predictions based on past
observations, without limiting ourselves to plans of a specific
depth or with limited long-term relationships.

Our work could be improved by incorporating better object
recognition. In its current iteration, we manually labeled all
the objects in the 3D scene. Understanding additional aspects
of scene dynamics, by using a method such as [38], could
help to disambiguate cases where scene dynamics confound
observations of intentional human actions. In addition, we
use a relatively naive Euclidean distance cost function for our
rational low-level planner (RRT*). The synthesized trajecto-
ries could be made more realistic by incorporating a more
sophisticated low-level rational planner, such as one learned
through reinforcement learning [7]. A further limitation is
that the planning dictionary must be provided a-priori; it
would be useful for a robot to be able to learn a planning
dictionary through passive observations with only the ability
to detect terminal actions. An example of such a system is
outlined in [29].
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